skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Sen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract Spike-timing-dependent plasticity (STDP) is an unsupervised learning mechanism for spiking neural networks that has received significant attention from the neuromorphic hardware community. However, scaling such local learning techniques to deeper networks and large-scale tasks has remained elusive. In this work, we investigate a Deep-STDP framework where a rate-based convolutional network, that can be deployed in a neuromorphic setting, is trained in tandem with pseudo-labels generated by the STDP clustering process on the network outputs. We achieve 24.56% higher accuracy and 3.5 × faster convergence speed at iso-accuracy on a 10-class subset of the Tiny ImageNet dataset in contrast to ak-means clustering approach. 
    more » « less
  3. Neuromorphic computing algorithms based on Spiking Neural Networks (SNNs) are evolving to be a disruptive technology driving machine learning research. The overarching goal of this work is to develop a structured algorithmic framework for SNN training that optimizes unique SNN-specific properties like neuron spiking threshold using neuroevolution as a feedback strategy. We provide extensive results for this hybrid bio-inspired training strategy and show that such a feedback-based learning approach leads to explainable neuromorphic systems that adapt to the specific underlying application. Our analysis reveals 53.8, 28.8, and 28.2% latency improvement for the neuroevolution-based SNN training strategy on CIFAR-10, CIFAR-100, and ImageNet datasets, respectively in contrast to state-of-the-art conversion based approaches. The proposed algorithm can be easily extended to other application domains like image classification in presence of adversarial attacks where 43.2 and 27.9% latency improvements were observed on CIFAR-10 and CIFAR-100 datasets, respectively. 
    more » « less
  4. null (Ed.)
    Neuromorphic computing is emerging to be a disruptive computational paradigm that attempts to emulate various facets of the underlying structure and functionalities of the brain in the algorithm and hardware design of next-generation machine learning platforms. This work goes beyond the focus of current neuromorphic computing architectures on computational models for neuron and synapse to examine other computational units of the biological brain that might contribute to cognition and especially self-repair. We draw inspiration and insights from computational neuroscience regarding functionalities of glial cells and explore their role in the fault-tolerant capacity of Spiking Neural Networks (SNNs) trained in an unsupervised fashion using Spike-Timing Dependent Plasticity (STDP). We characterize the degree of self-repair that can be enabled in such networks with varying degree of faults ranging from 50 to 90% and evaluate our proposal on the MNIST and Fashion-MNIST datasets. 
    more » « less